Algebraic Notions of Non-Termination

نویسندگان

  • Peter Höfner
  • Georg Struth
چکیده

We study and compare two notions of non-termination on idempotent semirings: infinite iteration and divergence. We determine them in various models and develop conditions for their coincidence. It turns out that divergence yields a simple and natural way of modelling infinite behaviour, whereas infinite iteration shows some anomalies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic Notions of Termination

Five algebraic notions of termination are formalised, analysed and compared: well-foundedness or Noetherity, Löb’s formula, absence of infinite iteration, absence of divergence and normalisation. The study is based on modal semirings, which are additively idempotent semirings with forward and backward modal operators. To reason about infinite behaviour, semirings are extended to divergence semi...

متن کامل

Algebraic Notions of Termination

Five algebraic notions of termination are formalised, analysed and compared: wellfoundedness or Noetherity, Löb’s formula, absence of infinite iteration, absence of divergence and normalisation. The study is based on modal semirings, which are additively idempotent semirings with forward and backward modal operators. To model infinite behaviours, idempotent semirings are extended to divergence ...

متن کامل

Rough ideals based on ideal determined varieties

The paper is devoted to concern a relationship between rough set theory and universal algebra. Notions of lower and upper rough approximations on an algebraic structure induced by an ideal are introduced and some of their properties are studied. Also, notions of rough subalgebras and rough ideals with respect to an ideal of an algebraic structure, which is an extended notion of subalgebras and ...

متن کامل

Termination in Modal Kleene Algebra

Modal Kleene algebras are Kleene algebras with forward and backward modal operators defined via domain and codomain operations. The paper investigates the algebraic structure of modal operators. It studies and compares different notions of termination in this class, including an algebraic correspondence proof of Löb’s formula from modal logic. It gives calculational proofs of two fundamental st...

متن کامل

GENERALIZATIONS OF delta-LIFTING MODULES

In this paper we introduce the notions of G∗L-module and G∗L-module whichare two proper generalizations of δ-lifting modules. We give some characteriza tions and properties of these modules. We show that a G∗L-module decomposesinto a semisimple submodule M1 and a submodule M2 of M such that every non-zero submodule of M2 contains a non-zero δ-cosingular submodule.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006